Optimal Explicit Strong - Stability - Preserving

نویسندگان

  • EMIL M. CONSTANTINESCU
  • ADRIAN SANDU
چکیده

This paper constructs strong-stability-preserving general linear time-stepping methods that are well suited for hyperbolic PDEs discretized by the method of lines. These methods generalize both Runge–Kutta (RK) and linear multistep schemes. They have high stage orders and hence are less susceptible than RK methods to order reduction from source terms or nonhomogeneous boundary conditions. A global optimization strategy is used to find the most efficient schemes that have low storage requirements. Numerical results illustrate the theoretical findings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implicit-explicit schemes based on strong stability preserving time discretisations

In this note we propose and analyze an implicit-explicit scheme based on second order strong stability preserving time discretisations. We also present some theoretical and numerical stability results for second order Runge Kutta IMEX schemes.

متن کامل

Strong Stability-Preserving High-Order Time Discretization Methods

In this paper we review and further develop a class of strong-stability preserving (SSP) high-order time discretizations for semi-discrete method-of-lines approximations of partial di erential equations. Termed TVD (total variation diminishing) time discretizations before, this class of high-order time discretization methods preserves the strong-stability properties of rst-order Euler time step...

متن کامل

Optimal Strong-Stability-Preserving Time-Stepping Schemes with Fast Downwind Spatial Discretizations

In the field of strong-stability-preserving time discretizations, a number of researchers have considered using both upwind and downwind approximations for the same derivative, in order to guarantee that some strong stability condition will be preserved. The cost of computing both the upwind and downwind operator has always been assumed to be double that of computing only one of the two. Howeve...

متن کامل

Ju n 20 06 Implicit - explicit methods based on strong stability preserving multistep time discretizations ⋆

In this note we propose and analyze novel implicit-explicit methods based on second order strong stability preserving multistep time discretizations. Several schemes are developed, and a linear stability analysis is performed to study their properties with respect to the implicit and explicit eigenvalues. One of the proposed schemes is found to have very good stability properties, with implicit...

متن کامل

Implicit - explicit methods based on strong stability preserving multistep time discretizations ⋆ Thor

In this note we propose and analyze novel implicit-explicit methods based on second order strong stability preserving multistep time discretizations. Several schemes are developed, and a linear stability analysis is performed to study their properties with respect to the implicit and explicit eigenvalues. One of the proposed schemes is found to have very good stability properties, with implicit...

متن کامل

On High Order Strong Stability Preserving Runge-Kutta and Multi Step Time Discretizations

Strong stability preserving (SSP) high order time discretizations were developed for solution of semi-discrete method of lines approximations of hyperbolic partial differential equations. These high order time discretization methods preserve the strong stability properties–in any norm or seminorm—of the spatial discretization coupled with first order Euler time stepping. This paper describes th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010